Search results for "Ionic complex"
showing 3 items of 3 documents
Geochemistry of REE, Zr and HF in a wide range of pH and water composition: The Nevado del Ruiz volcano hydrothermal system (Colombia)
2015
International audience; The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado del Ruiz volcano system. A wide range of pH, between 1.0 and 8.8, characterizes these fluids. The acidic waters are sulphate dominated with different Cl/SO4 ratios. The important role of the pH and the ionic complexes for the distribution of REE, Zr and Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipitation of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters.Y–Ho and Z…
Exploring reactivity of a bis-sulfonium zirconocene-ate dimer: synthesis of various zwitterionic phosphonium anionic zirconocene complexes
2007
Abstract Formal [3+2] cycloaddition reactions between the bis-sulfonium zirconocene-ate dimer 1a and methylpropiolate, benzaldehyde and carbon disulfide afforded stable zwitterionic phosphonium zirconocene-ate complexes 2–4, respectively, with two orthocondensed five-membered heterocycles. X-ray crystal structure of 4 has been determined. Elemental chalcogens (S, Se, Te) gave rise also to a new variety of five-coordinate zirconium(IV) complexes (5–7) by a formal [3+1] cycloaddition reaction. In these bicyclic zirconates, sulfur is included in a five-membered ring while the second chalcogen is in a four-membered one.
Stable Green Electroluminescence from an Iridium Tris-Heteroleptic Ionic Complex
2012
An ionic tris-heteroleptic iridium complex gives green light-emitting electrochemical cells (LECs) with unprecedented performances for this part of the visible spectrum. The devices are very bright (>1000 cd m–2), efficient (∼3%), and stable (>55 h). The novel complex is prepared using a new and efficient synthetic procedure. We show that there is a mixed orbital formation originating from the two different orthometalating ligands resulting in photophysical properties that lie between those of its two bis-heteroleptic analogs. Therefore, tris-heteroleptic complexes provide new avenues for fine-tunning the emission properties and to bridge gaps between a series of bis-heteroleptic complexes.